It Takes Two to Tango: When and Where Dual Nutrient (N & P) Reductions Are Needed to Protect Lakes and Downstream Ecosystems

1Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, North Carolina 28557, United States
2Department of Biology, Baylor University, One Bear Place #97388, Waco, Texas 76798, United States
3Dept. of Earth and Environmental Sciences, Wright State University, Dayton, Ohio 45435, United States
4Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, Texas 78373, United States
5University of Florida Institute of Food and Agricultural Sciences, and Florida Sea Grant College Program, Gainesville, Florida 32608, United States
6Department of Microbiology, The University of Tennessee, Knoxville, Tennessee 37996-0845, United States
7Watershed Sciences Department and the Ecology Center, Utah State University, Logan, Utah 84322-5210, United States

ABSTRACT: Preventing harmful algal blooms (HABs) is needed to protect lakes and downstream ecosystems. Traditionally, reducing phosphorus (P) inputs was the prescribed solution for lakes, based on the assumption that P universally limits HAB formation. Reduction of P inputs has decreased HABs in many lakes, but was not successful in others. Thus, the “P-only” paradigm is overgeneralized. Whole-lake experiments indicate that HABs are often stimulated more by combined P and nitrogen (N) enrichment rather than N or P alone, indicating that the dynamics of both nutrients are important for HAB control. The changing paradigm from P-only to consideration of dual nutrient control is supported by studies indicating that (1) biological N fixation cannot always meet lake ecosystem N needs, and (2) that anthropogenic N and P loading has increased dramatically in recent decades. Sediment P accumulation supports long-term internal loading, while N may escape via denitrification, leading to perpetual N deficits. Hence, controlling both N and P inputs will help control HABs in some lakes and also reduce N export to downstream N-sensitive ecosystems. Managers should consider whether balanced control of N and P will most effectively reduce HABs along the freshwater-marine continuum.

INTRODUCTION

The need to reduce nutrient inputs to the world’s surface waters is intensifying as water quality deteriorates and clean water demands increase along the freshwater to marine continuum (Figure 1). In lakes, the problem is often addressed by reducing phosphorus (P) inputs based on the premise that P universally limits primary productivity, algal biomass, and harmful algal bloom (HAB) formation.1 This practice was successful in some but not all lakes.2-3 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and P act in concert to stimulate biomass production.2-4 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and P act in concert to stimulate biomass production.2-4 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and P act in concert to stimulate biomass production.2-4 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and P act in concert to stimulate biomass production.2-4 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and P act in concert to stimulate biomass production.2-4 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and P act in concert to stimulate biomass production.2-4 Therefore, we argue that generalizing the “P-only” paradigm is not appropriate, nor is it responsible to shift the eutrophication burden to vulnerable ecosystems downstream (e.g., the Gulf of Mexico, Baltic Sea) by only controlling P upstream. HAB-impacted lakes and reservoirs include some of the world’s largest and culturally most important waterbodies (e.g., Lakes Erie and Okeechobee, North America; Lake Victoria, Africa; Lakes Taihu and Dianchi, China; Lakes Balaton and Maggiore, Europe; Lakes Rotorua and Rotoiti, New Zealand). These lakes exhibit varying nutrient loading and cycling patterns, including periods of P or nitrogen (N) limitation, as well as periods of balanced growth, where N and
nutrient-rich wastewater discharge and intensified nutrient runoff from landscapes.8−13 Fertilizer use is increasing, and the chemical composition of the fertilizers being applied is changing. For example, in the United States, nearly 90\% of the N fertilizer now being applied is urea (Figure 2), a moiety that is rarely even measured in water quality analyses but is known to stimulate HABs and toxin production.14 Other agricultural practices contributing to nonpoint source nutrient loads include the massive expansion of field tile drainage systems, which remove excess surface water but act as a direct conduit for dissolved nutrients into freshwaters.15,16 The combined effect of N and P enrichment has accelerated eutrophication and proliferation of HABs on a global scale.9,10,12,15 These increasing nutrient loads have also promoted eutrophication of nutrient-sensitive, downstream rivers,17 wetlands,18 estuaries, and coastal marine ecosystems (e.g., Chesapeake Bay, Albemarle-Pamlico Sound, NC; northern Gulf of Mexico; San Francisco Bay delta; Po River Delta-northern Adriatic Sea).10,19

New policies directing managers to control both N and P are needed to protect these aquatic resources. For example, the US Environmental Protection Agency (EPA) has identified the need for water quality standards for both N and P,20 but the present approach to remediating HAB-impacted lakes is to only mandate total maximum daily loads (TMDLs) for P. The TMDL process needs to be broadened to include N in...
situations where analyses indicate that HABs and detrimental effects in downstream systems are caused or exacerbated by both nutrients. For example, a recent modeling study suggests that nutrients (N and P) must be reduced by 69% to achieve targets for the summer hypoxic zone in the Gulf of Mexico, which supports a $30 billion seafood and recreational fishing industry. Accomplishing loading reductions of this magnitude for a system the size of the Mississippi River watershed would require broad-scale reductions in loading from all sources and all areas of the watershed. Advocating for loading reductions of just one nutrient from individual systems within larger watersheds inhibits progress on achieving these goals, threatens valuable resources throughout the watershed and coastal receiving waters, and is irresponsible on many socioeconomic levels.

Which Nutrients (e.g., P vs N) Control Eutrophication and HABs? Phosphorus removal has improved water quality in many lakes, but improvements from P-only removal are often temporary (e.g., Lake Erie), and many case studies show successful eutrophication control from combined N and P reductions or N alone (Table 1). It is important to note that nutrient management efforts focused on a single nutrient are likely to result in reductions in both nutrients, even if unintended and/or unquantified. Thus, it is often not possible to credit subsequent ecosystem improvements to control of a single nutrient. A global analysis of nutrient limitation experiments ranging from 1-L microcosms to >10,000-L mesocosms incubated over periods from less than a day to several months also indicated that costimulation by N and P is the rule, rather than the exception. The SD when present on a histogram, indicates annual variability of a lake that was treated for more than one year. Note that all of these lakes were oligotrophic and located in north-temperate or arctic zones, and thus are not necessarily representative of lakes in more southern latitudes.

Table 1. Selected Examples of Successful N + P Loading Reductions in Aquatic Systems

<table>
<thead>
<tr>
<th>Location</th>
<th>Nutrient Reductions</th>
<th>System Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wuli Lake, China</td>
<td>Lake restoration via dredging (removed 41 tons TN, 90 tons TP) and external load reduction</td>
<td>Significant decrease in annual TP (33%), TN (54%), Chl a (69%), phytoplankton biomass decreased by 91%</td>
</tr>
<tr>
<td>Tampa Bay, FL</td>
<td>60% N load reduction from wastewater treatment, fertilizer reductions, stormwater diversion</td>
<td>Reduced algal blooms and hypoxia, seagrass coverage highest since 1950, Secchi depth more than doubled</td>
</tr>
<tr>
<td>Lake Tohopekaliga, FL</td>
<td>66% TP and 60% TN reduction from wastewater treatment and fertilizer reductions, stormwater diversion, and dredging</td>
<td>In-lake TP reduced by 56%, in-lake TN reduced by 29%, 50% significant long-term decrease in Chl a after wastewater diversion</td>
</tr>
<tr>
<td>Lake Albufera, Spain</td>
<td>77% P, 24% N loading reduction from sewage diversion</td>
<td>In-lake P reduced by 30%, chlorophyll reduced by 50%, phytoplankton community shift</td>
</tr>
<tr>
<td>Scheldt estuary, Belgium</td>
<td>Reduction in P and N from industry and P from municipal sources</td>
<td>Decreased DIN and DIP, improved O2 conditions, estuary evolved from net DIP sink to net source, net DIN source to sink, riverine chlorophyll decreased to <10% of prereduction level</td>
</tr>
</tbody>
</table>

“Relevant references are cited below each location.”

![Figure 3. Mean response of phytoplankton to nitrogen (+N), phosphorus (+P), or N+P additions in 20 whole-lake experiments. Responses of chlorophyll, algal biomass, or primary production are expressed relative to controls (either pretreatment sampling or nearby control lakes). Geometric mean responses and standard deviations for the three treatments were +N — 169% ± 100%; +P — 34% ± 39%; +NP — 425% ± 419%. Each lake is indicated by a different number. Some lakes received different nutrient additions in subsequent years. Studies were done in the Experimental Lakes Area in Ontario, Canada (ELA; 33,81,82), northern Sweden,83,84 Northwest Territories of Canada (NWT;85), Norway,86 Quebec,87,88 Kodiak Island and Lake E, Alaska.89 Note that levels of nutrients added to each lake varied between studies, and thus are not directly comparable. The SD when present on a histogram, indicates annual variability of a lake that was treated for more than one year. Note that all of these lakes were oligotrophic and located in north-temperate or arctic zones, and thus are not necessarily representative of lakes in more southern latitudes. Environmental Science & Technology Policy Analysis DOI: 10.1021/acs.est.6b02575 Environ. Sci. Technol. 2016, 50, 10805 – 10813

10807
exception, in eutrophic ecosystems, and strictly N-limited growth occurs with equal magnitude to P-limited growth.5,31 These containerized experiments were criticized as not being applicable to whole-lake conditions,18 but multiscale analyses of fertilization experiments showed that phytoplankton responded similarly from bottles to small pond mesocosms.18,32 Perhaps more importantly, a review of whole-lake fertilization experiments indicates similar patterns (c.f., 33) (Figure 3). In those ecosystem-scale experiments, N and P additions alone often stimulated some algal growth, but much higher growth occurred when both nutrients were added together.

The nutrient that limits phytoplankton growth can vary temporally and geographically (even on microscales at the cellular level), with P limitation in spring often changing to N limitation in summer and fall when temperature and meteorological conditions are conducive to HABs.15,16,34 Impaired ecosystems often receive simultaneously high N and P inputs. If only N or only P is reduced from external inputs, then excess biomass may still occur and perpetuate the problem due to legacy loading, particularly of P, which does not have a gaseous form. A singular focus also threatens downstream ecosystems, such as the northern Gulf of Mexico, which experiences annual bottom-water hypoxia related to excessive N and P inputs (e.g., refs 21 and 22). Internal loading of legacy nutrients illustrates the importance of nutrient recycling dynamics in regulating and exacerbating eutrophication18 and is particularly high where sulfate concentrations are high. Reduced sulfide binds iron in the sediments, ultimately allowing phosphate to be released (e.g., ref 35). Consequently, in many situations, reducing both N and P from external inputs provides the best opportunity to reduce phytoplankton biomass and prevent shifting nutrient problems to downstream systems. Increasing nutrient inputs worldwide coincide with an unprecedented increase in HABs, especially toxic, non-N-fixing cyanobacterial blooms. These HABs have impeded human water uses (e.g., drinking water, recreational, and commercial fishing) and threaten the long-term sustainability of impacted waters.15,36 Thus, we can no longer afford to ask whether we have an N or a P problem—we have a nutrient problem that should be addressed at whole-watershed scales.

The fact that many lakes are impacted by both P and N is due in part to the traditional focus on controlling only P inputs, which has resulted in a lack of control of N inputs from watersheds, including N in urban runoff and increased use of fertilizers in agriculture.15 Other agricultural practices contributing to nonpoint source nutrient loads include the massive expansion of field tile drainage systems, which remove excess surface water but act as a direct conduit for dissolved nutrients into freshwaters.15,16

These changes are occurring worldwide and coincide with an unprecedented increase in HABs, especially toxic, non-N-fixing cyanobacterial blooms, which have impeded human uses (e.g., drinking water, recreational, and fishing) and threaten the long-term sustainability of impacted waters.15,36 For example, estimated costs for the 2011 and 2014 Microcystis blooms in Lake Erie (U.S.-Canada) were $71 and $65 million, respectively, for ecosystem service interruptions, such as reduced property values, tourism, recreation, and increased water treatment.15 It is important to note, however, that the costs of the drinking water shutdown in August 2014 for the City of Toledo are not included in the estimate; therefore, the $65 million figure is likely a large underestimate.56 However, the cost of not reducing watershed nutrients, and thus having to respond to and mitigate bloom events, is potentially much greater. Responsibility for dealing with nutrient pollution, like climate change, is a national, and in many instances (Europe, Asia, North America), an international issue.

Cyanobacterial HAB Taxa of Concern with Regard to Nutrient Overenrichment. A prominent example of a cyanobacterial bloom requiring N control occurs in Lake Erie, on the U.S.-Canada border. Severe blooms of toxic, non-N\textsubscript{2} fixing cyanobacteria (e.g., Microcystis) have emerged in Lake Erie and other nutrient-enriched systems worldwide (Figure 1), despite previous and ongoing P-focused control.14,4,51 Because these taxa cannot fix atmospheric N\textsubscript{2}, they require combined N sources, such as nitrate (NO\textsubscript{3}), ammonium (NH\textsubscript{4}), and dissolved organic N (e.g., urea) to support growth, toxin, and bloom formation. Other explanations, which focused on P, have been offered for the emergence of non-N-fixing cyanobacteria (Microcystis) and eukaryotic Cladophora38 in Lake Erie, including the increase of spring soluble reactive P loading in recent decades.59,40 However, these explanations do not consider the fact that these organisms also require combined N for growth and toxin production, and they also fail to resolve temporal discrepancies in the loading of bioavailable P and bloom timing. Cyanobacteria capable of N\textsubscript{2} fixation occur in Lake Erie and other systems, but they often proliferate using combined N from the environment.15,34,36,41 Recent laboratory evidence has identified at least one of these possible diazotrophs (Cylindrospermopsis) as a “reluctant” N\textsubscript{2}-fixer, since the process provides only enough cellular N to support very low growth rates.62 The recent dominance and persistence of non-N\textsubscript{2} fixing taxa, some producing N-rich toxins enhanced by N loading,48 sends a strong signal that management should focus on reducing N as well as P inputs in this system and others with Microcystis or other non-N-fixing taxa (e.g., Lake Okeechobee in Florida, and Lake Taihu in China).34,45

While the influence of climate change cannot be ignored,46,47 additional factors, such as changing land use and related increases in N and P pollution, dominate the persistent eutrophication of Lake Erie and other cyanobacteria-impaired systems.9,11,12 In February 2016, the governments of Canada and the U.S. signed an agreement to reduce P loads to Lake Erie by an additional 40% by February 2018.48 While reducing the loading of any nutrient is a positive step, no agreements have mandated N reductions. However, the U.S. EPA recently published a policy brief recommending a dual nutrient management approach.20 Reducing N loading is challenging, in part because of its diffuse nonpoint source origin, significant release from point sources, and complex biogeochemical transformations that can occur before and after it is delivered to the receiving water body.13,49,50 Control of nonpoint N sources has attracted limited attention in the freshwater eutrophication literature or from water quality managers.1-6,9,11,13,31 but simple, educational approaches targeting agricultural P fertilizer management could easily be expanded, at minimal or no cost, to include N reductions within existing and planned P management approaches. Additionally, new mitigation measures are being developed for agricultural landscapes that would reduce N export.44 Newer point-source treatments, such as advanced biological nutrient removal and wastewater reuse, reduce both N and P simultaneously and negate the need to choose between one nutrient or the other.

What Are the Sources, Forms, And Fate of the Nutrients Causing Cyanobacterial Blooms? In addition to its sources, the chemical form of N and turnover rates can
also affect dominant bloom-formers. For example, in Lake Okeechobee, FL, the cyanobacteria proportion increased, and diatom proportion decreased, as the ratio of NH$_4^+$:NO$_x$ increased. Additionally, reduced forms of N promote toxin production, high NH$_4^+$ concentrations are required for expression of toxin production genes, and urea uptake may lead to both increased Microcystis biomass and toxin production. Recent cyanobacterial blooms in Lake Okeechobee are dominated by non N$_2$-fixing Microcystis, whereas in the late 1980s, extensive pelagic blooms were caused primarily by the N$_2$-fixing Anabaena circinalis. Decades of excessive P inputs have often resulted in N limitation with surplus soluble reactive P. A strict P standard for Okeechobee and a P-TMDL was set by the U.S. EPA, but no such limit or standard has been established for N. The underlying, unsupported premise of lake managers is that if N were controlled more effectively than P, and the lake’s N:P ratio decreased, then it would lead to increased prevalence of N$_2$-fixing cyanobacteria. Rather than advocating for stricter N control, some constituents in the region have suggested that the regulatory agencies allow pumping of N-rich water from south of the lake back into the ecosystem, as it did in the past, to elevate the N:P ratio. Other recent studies have also proposed N additions to decrease cyanobacteria blooms and toxins in lakes (e.g., ref 58). However, total N is often the best predictor of toxin concentrations in lakes, and there are numerous studies showing that toxin production is associated with N supply (e.g., ref 43). Therefore, adding N to mitigate cyanobacterial blooms is not likely to be a suitable or responsible management approach.

One concern is that HABs may be exacerbated by the changing chemical nature of N and P being applied to agricultural landscapes (Figure 2). Experimental and modeling studies have now linked these changes in both P (as SRP) and N (as urea) to increased biomass and changes in community structure toward HABs. Indeed, in the last 50 years there has been a tremendous shift in the chemistry of nitrogenous-fertilizers used in agriculture: while ammonium nitrate had been historically preferred, urea (due to concerns that range from yield relative to cost and even safety) has markedly increased as the N-source of choice (Figure 2). And while the chemistry of different N-sources does not appear in at least a few cases to be shaping total plankton biomass, ammonium and urea are also linked to up-regulation of microcystin production, and urease activity has been correlated with increased microcystin concentrations. Given the need for specific enzymes for cells to directly utilize urea as a nitrogenous source, it is expected that such a shift in nitrogen chemistry may alter microbial (including plankton) community structure.

How Much Improvement Can Be Attained by Reducing N in Addition to P? The primary argument against combined N and P control of eutrophication is that N$_2$ fixation can make up ecosystem-scale N deficits, making N control irrelevant to eutrophication management. However, N$_2$ fixation is controlled by the organism’s needs and capabilities relative to environmental and/or biogeochemical factors (i.e., denitrification, grazing, nutrient regeneration) and are constrained by factors other than nutrient availability. For example, N$_2$ fixation is typically not detectable in phytoplankton when measurable NO$_3$ and NH$_4$ exists in the water column. This pattern results from different energetic costs associated with N utilization by phytoplankton, with NH$_4$ being the most energetically favorable, and N$_2$ the least favorable. The N cycle also has natural removal mechanisms at whole-lake scales, such as denitrification (the conversion of NO$_3$ to relatively inert N$_2$), which can counteract N inputs from N$_2$ fixation. Denitrification increases with increased P-driven eutrophication because of increased organic matter availability and hypoxic and anoxic zones conducive to

Figure 4. Conceptual diagram, illustrating nitrogen (N) and phosphorus (P) inputs, outputs, and storage in freshwater ecosystems. Note that only N has gaseous forms (stippled lines) that can exchange with the atmosphere (Adapted from).
denitrification. Because N occurs in gaseous forms, while P has no gaseous form, P inputs are often retained at higher proportions than N inputs (Figure 4). The relative magnitude of N loss through denitrification and N gain through N2 fixation is an important barometer for the importance of combined N pollution in aquatic ecosystems.

Data on the balance between denitrification and N2 fixation is limited, especially in lakes, but groupings of theoretical lake conditions can demonstrate the importance of N transformations on whole lake nutrient status. Figure 5 shows categories of lakes based on their N:P ratio from external inputs and the balance between N2 fixation and denitrification. Strict P limitation occurs when the N:P ratio of external inputs is greater than 23 (by mass), and N2 fixation is either greater than or equal to annual denitrification rates (panels 4 and 7, Figure 5). Phytoplankton would be strictly N-limited where the N:P of external inputs is less than 9, and denitrification exceeds N2 fixation (panel 3, Figure 5). Where loading N:P is less than 9, and annual N2 fixation and denitrification are approximately equal, phytoplankton growth is either N-limited or exhibits balanced growth, depending on the short-term efficiency of N2 fixation. When the rate of external N inputs exceeds rates of N2 fixation or denitrification, the lakes will exhibit balanced growth via N+P costimulation. These results are supported by findings from small-scale bioassays, larger scale incubations, and whole-lake fertilization experiments (Figure 3). As such, arguments against N control based on apparent short-term bottle effects do not hold up under greater scrutiny of results. When properly interpreted, even results from whole-lake experiments continually support the need for dual nutrient control (e.g., refs 33,79 Figure 3).

CONCLUSIONS

Given that lakes sometimes respond to P-only control, but in other instances to a balanced control of N and P, and given that downstream ecosystems are sensitive to excess N loading, a new paradigm is needed. Resource managers need to (1) holistically consider lakes and downstream rivers, estuaries, and other coastal systems in developing nutrient control strategies; (2) move away from presuming that P-only control is the only solution to eutrophication issues; and (3) determine whether a source control program targeted at both N and P will provide greater ecosystem benefits.

Many of the approaches already being implemented to target P loading reductions will undoubtedly also influence N loads, but recognizing the importance of N in promoting HABs should also stimulate innovation for reducing N loads. Control of both nutrients will require substantial financial investment but will be cost-effective over the long-term relative to the high costs associated with responding to HAB issues (e.g., Toledo). Initial efforts should include implementation of N control based on stoichiometric needs relative to allowed P regulations. Incorporating emerging science into water quality policies is...
critical to successful rehabilitation of inland and coastal aquatic resources. For example, P control is improved by differentiating dissolved reactive P from total P (e.g., ref 11), but such management actions ignore internal P loading and will have little effect on HABs that rely on combined N for growth and toxin production. Similarly, differentiating reduced N loads from total N loads is critical for creating management guidelines. Conceptual models of N and P dynamics in ecosystems susceptible to HABs should be developed, refined, and incorporated into quantitative models based on experimental studies of N and P transformations in the water and sediments of these ecosystems. Management guidelines should be revisited regularly based on subsequent improvements in our understanding of the interactive effects of these two critical nutrients. These policy changes are urgent because warming caused by climate change is expected to make HAB control even more difficult in the future if external nutrient loads are not reduced. Ref 64.

■ AUTHOR INFORMATION

Corresponding Author
*Phone: +1 (252) 726-6841 ×133; e-mail: hpaerl@email.unc.edu.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We appreciate the technical assistance and input of A. Joyner and B. Peierls. Research discussed in this chapter was partially supported by the National Science Foundation (DEB 9815495; OCE 9905723; CBET 0826819, 1230543; IOS 1451528 and Dimensions of Biodiversity 1240851/1240870), U.S. EPA STAR Projects R82-5243-010 and R82867701, the North Carolina Dept. of Natural Resources and Community Development/UNC Water Resources Research Institute (Neuse River Estuary Monitoring and Modeling Project, ModMon), the Ecology Center at Utah State University, the Arkansas Water Resources Center, and the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences.

■ REFERENCES

