Watershed-Scale Drivers of Air-Water CO₂ Exchanges in Two Lagoonal North Carolina (USA) Estuaries

Bryce R. Van Dam¹, Joseph R. Crosswell¹-2-3, Iris C. Anderson³, and Hans W. Paerl¹

¹Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, USA, ²CSIRO Oceans and Atmosphere, Brisbane, Queensland, Australia, ³Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, USA

Abstract
Riverine loading of nutrients and organic matter act in concert to modulate CO₂ fluxes in estuaries, yet quantitative relationships between these factors remain poorly defined. This study explored watershed-scale mechanisms responsible for the relatively low CO₂ fluxes observed in two microtidal, lagoonal estuaries. Air-water CO₂ fluxes were quantified with 74 high-resolution spatial surveys in the neighboring New River Estuary (NewRE) and Neuse River Estuary (NeuseRE), North Carolina, which experience a common climatology but differ in marine versus riverine influence. Annually, both estuaries were relatively small sources of CO₂ to the atmosphere, 12.5 and 16.3 mmol C m⁻² d⁻¹ in the NeuseRE and NewRE, respectively. Large-scale pCO₂ variations were driven by changes in freshwater age, which modulates nutrient and organic carbon supply and phytoplankton flushing. Greatest pCO₂ undersaturation was observed at intermediate freshwater ages, between 2 and 3 weeks. Biological controls on CO₂ fluxes were obscured by variable inputs of river-born CO₂, which drove CO₂ degassing in the river-dominated NeuseRE. Internally produced CO₂ exceeded river-born CO₂ in the marine-dominated NewRE, suggesting that net ecosystem heterotrophy, rather than riverine inputs, drove CO₂ fluxes in this system. Variations in riverine alkalinity and inorganic carbon loading caused zones of minimum buffering capacity to occur at different locations in each estuary, enhancing the sensitivity of estuarine inorganic C chemistry to acidification. Although annual CO₂ fluxes were similar between systems, watershed-specific hydrologic factors led to disparate controls on internal carbonate chemistry, which can influence ecosystem biogeochemical cycling, trophic state, and response to future perturbations.

Plain Language Summary
Estuaries release nearly as much CO₂ to the atmosphere as is taken up over the continental shelf. However, estuarine emissions vary greatly across space and time, contributing significantly to the uncertainty of global carbon budgets. In this study, we assess spatial and temporal variability in CO₂ emissions from adjacent estuaries in North Carolina, USA. These emissions varied across seasons and river discharge conditions but were relatively small when assessed as annual averages. Freshwater age (time freshwater spends in estuary before being flushed to ocean) was an important driver of CO₂ dynamics in both estuaries, due to its role in regulating nutrient, DOC, and DIC supply while also affecting the rate at which phytoplankton are flushed from the system. While the relationship between freshwater age and CO₂ was similar for both estuaries, we show that the various external and internal inputs of CO₂ were quite different. Riverine CO₂ inputs drove CO₂ emissions in the river-dominated estuary, while internally produced CO₂ (from community respiration) was more important in the marine-dominated estuary. We also demonstrate that poorly buffered regions in both estuaries are particularly vulnerable to acidification, with potentially negative impacts on calcifying organisms.

1. Introduction
Estuaries are important biogeochemical and trophic links between terrestrial and marine systems and provide critical ecosystem services to coastal populations (Hobbie, 2000; Pendleton, 2008; Wetz & Yoskowitz, 2013). Estuaries often receive large allochthonous organic matter loads, which support high remineralization rates and drive them toward net ecosystem heterotrophy and CO₂ degassing (Bauer et al., 2013; Borges & Abril, 2011; Cai, 2011; Frankignouille et al., 1998). At the same time, nutrients (nitrogen and phosphorus) supplied externally or recycled internally drive high rates of autochthonous organic matter production in these ecosystems, causing some estuaries to act as CO₂ sinks (Crosswell et al., 2012, 2017; Drupp et al., 2011; Hunt et al, 2011; Maher & Eyre, 2012). The balance between these factors varies over space and time, making it...
difficult to globally integrate CO\(_2\) fluxes across these diverse ecosystems. Early attempts at scaling estuarine CO\(_2\) fluxes globally or regionally resulted in relatively high estimates, on the order of 100–500 mmol C m\(^{-2}\) d\(^{-1}\) (Borges, Delille, et al., 2004; Borges, Vanderborgth, et al., 2004; Frankignoulle et al., 1998), which have since been revised downward by an order of magnitude (Cai, 2011; Chen & Borges, 2009; Laruelle et al., 2010, 2013; Maher & Eyre, 2012; Regnier et al., 2013). This decrease was largely due to the inclusion of microtidal and marine-dominated systems, which are relatively small sources of CO\(_2\) to the atmosphere (Jiang et al., 2008), and as a result, the most recent globally scaled estimates of estuarine CO\(_2\) degassing have again decreased, to ~20–40 mmol C m\(^{-2}\) d\(^{-1}\) (Laruelle et al., 2013; Maher & Eyre, 2012; Regnier et al., 2013). Because microtidal, lagoonal estuaries make up ~50% of the global estuarine surface area (Chen et al., 2013; Crosswell et al., 2012; Kennish & Pae rl, 2010; Laruelle et al., 2013), information on the drivers of air-water CO\(_2\) exchange across the diverse range of such systems is needed if we are to accurately scale this biogeochemical flux globally.

In microtidal, lagoonal estuaries, variations in the timing and magnitude of river discharge regulate nutrient supply as well as the quality and quantity of organic matter (Crosswell et al., 2012; Koné et al., 2009; Mallin et al., 1993; Pae rl et al., 2014). Hence, the metabolic balance of a given estuary is closely linked to the hydrology of its watershed. This idea is supported by previous findings linking seasonal to annual variation in CO\(_2\) flux with changes in freshwater delivery, through both surface (Akhand et al., 2016; Drupp et al., 2011; Flecha et al., 2015; Guo et al., 2009; Yao et al., 2007; Zhai et al., 2005) and groundwater channels (Cai et al., 2015; Jeffrey et al., 2016; Macklin et al., 2014; Santos et al., 2010). Watershed-scale hydrology may also drive complex changes in the buffering capacity of estuarine waters, impacting calcifying organisms (Barton et al., 2012; Hofmann et al., 2010), pH-sensitive processes like nitrification (Beman et al., 2010; Huesemann et al., 2002), and even animal behavior (Dodd et al., 2015; Leung et al., 2015). While ocean acidification has caused a variable but generally negative impact on calcifying phytoplankton and benthic invertebrates (Doney et al., 2009; Hofmann et al., 2010), elevated atmospheric CO\(_2\) may actually enhance the productivity of C3-dominated salt marshes (Langley & Megonigal, 2010; Mozdzer & Megonigal, 2012), and the invasion of this anthropogenic CO\(_2\) into the coastal ocean may increase seagrass production (Zimmerman et al., 2015). Hu and Cai (2013) demonstrated that acidification (due to anthropogenic CO\(_2\) emissions and eutrophication) was greater for estuaries receiving lower loads of HCO\(_3^-\) and other weathering products from their respective rivers. A subsequent analysis reinforced this concept by showing that a majority of Texas estuaries are experiencing long-term acidification, driven largely by reduced alkalinity loads stemming from drought and human water use (Hu et al., 2015). The potential for acidification in estuaries not experiencing drought has received less attention, despite the fact that acidification may have particularly severe impacts on the economies of communities surrounding these estuaries (Ekstrom et al., 2015). Recent studies have indicated that estuaries receiving moderate or low alkalinity loads from their tributary rivers (like those of eastern North Carolina) may be particularly vulnerable to acidification due to mixing with ocean waters high in dissolved CO\(_2\), as well as those receiving inputs of acidity through aerobic (Hu & Cai, 2013) and anaerobic pathways (Cai et al., 2017). Therefore, knowledge of how carbonate buffering varies between estuaries experiencing the same climatic conditions but different riverine end-member chemistries is critical if we are to predict how coastal systems will respond to future acidification.

Climate change is expected to alter current hydrologic patterns, and these changes will affect estuarine carbon (C) cycling on seasonal to decadal scales (Dhillon & Inamdar, 2013; Najjar et al., 2010). In addition to these longer-term effects, episodic events like storms and droughts are also expected to increase with climate change and will contribute significantly to estuarine CO\(_2\) fluxes on an annual scale, although the nature of that change will depend on a variety of system-specific features (Crosswell et al., 2012; Evans et al., 2013; Hunt et al., 2013; Ruiz-Halpern et al., 2015). Both episodic and seasonal variations in river discharge strongly affect air-water CO\(_2\) exchange in estuaries (Bauer et al., 2013; Borges & Abril, 2012; Cai, 2011; Chen et al., 2013); however, quantitative relationships between estuarine C cycling and catchment hydrology remain relatively poorly defined.

2. Materials and Methods

2.1. Study Site

The Neuse River flows from the urbanized North Carolina Piedmont in the Raleigh-Durham-Chapel Hill Triangle area through the coastal plain, toward its terminus in Pamlico Sound, the third largest estuarine
The Neuse River Estuary (NeuseRE) begins near New Bern, NC, where the funnel-shaped estuary widens considerably and oligohaline conditions prevail. Due to restricted exchange across the narrow inlets of Pamlico Sound, astronomical tides are minimal (<10 cm); lateral and longitudinal water movements are mostly driven by meteorological factors like wind and freshwater discharge (Luettich et al., 2000); hence, we consider this estuary to be “river-dominated.” Submarine groundwater discharge to the estuary is small relative to inputs of water and nutrients from the Neuse and Trent rivers (Fear et al., 2007; Null et al., 2011). This system has been well studied for decades via long-term monitoring projects like the Neuse River Estuary Modeling and Monitoring program (ModMon; http://www.unc.edu/ims/neuse/modmon/). A history of accelerated anthropogenic nutrient loading, largely related to agricultural and urban development, has driven eutrophication in this system since the 1970s, with primary productivity estimated at between 200 and 500 g C m⁻² yr⁻¹ (Boyer et al., 1993; Mallin et al., 1993). A combination of these factors leads to frequent phytoplankton blooms and bottom water hypoxia (Paerl et al., 1998, 2007).

The New River is a small coastal plain river, located entirely in Onslow County, NC, USA. Agricultural land use dominates its watershed, which is approximately one tenth the size of the Neuse River watershed. The upper estuary is surrounded by the city of Jacksonville, NC, with a 2010 census population of over 70,000 (Figure 1). Impervious surfaces, along with the small size of the watershed, cause river inputs to the New River Estuary (NewRE) to be relatively “flashy,” with discharge quickly peaking and receding after storms (Peierls et al., 2012). Because of relatively low river discharge and long residence time, we consider this estuary to exemplify “marine-dominated” traits. Before transitioning into the oligohaline NewRE near Jacksonville, NC, the...
New River enters a relatively short (~12 km) tidal freshwater reach, where N loads are attenuated by denitrification in the surrounding forested wetlands (Ensign et al., 2013; Von Korff et al., 2014). The body of the NewRE consists of five interconnected lagoons of differing sizes. The seaward lagoon is connected to the Atlantic Ocean by a narrow inlet that limits oceanic exchange. The tidal amplitude is correspondingly low, ranging from approximately 0.25 m in middle and upper segments to nearly 1 m at the New River Inlet. This low tidal amplitude, along with freshwater discharge, drives vertical stratification and frequent bottom water hypoxia, as often occurs in the NeuseRE. Following upgrades to a sewage treatment plant in 1998, primary production in the NewRE decreased, causing a transition from eutrophic (250–500 g C m\(^{-2}\) yr\(^{-1}\)) to mesotrophic status (<250 g C m\(^{-2}\) yr\(^{-1}\)) (L. C. A. Anderson, personal communication, 2015; Mallin et al., 2005). Fringing marshes are present in both estuaries but constitute a relatively small fraction of the intertidal area; salt marshes and swamps represent approximately 21 and 6% of the shoreline in the NewRE (Currin et al., 2015).

2.2. Synoptic Surveys

From October 2014 to October 2016, 74 high-resolution surveys of surface water partial pressure CO\(_2\) (pCO\(_2\)) were conducted at biweekly to monthly intervals, 36 in the NeuseRE and 38 in the NewRE. Twenty-one of the consecutive surveys were completed in a contiguous 25 h period, at dawn of the first day, dusk of the first day, and dawn of the following day. For the purposes of general comparisons in this study, these dawn-dusk-dawn surveys were combined into seven representative daily averages. All other surveys began in the midmorning (08:30–10:00 AM). The choice of a midmorning sampling time may lead to a small overestimation of pCO\(_2\) due to diurnal variations but has been used extensively because it is close to the idealized midpoint between dawn pCO\(_2\) maxima and dusk pCO\(_2\) minima (Crosswell et al., 2012; Maher & Eyre, 2012). For the purpose of this interestuary comparison, CO\(_2\) fluxes were estimated from longitudinal transects alone, which covered slightly different regions of each estuary. Because of the small size of the NewRE, a wide salinity range (~5–35) was surveyed during each transect. The surface area of the NeuseRE is ~4 times greater than the NewRE; thus, fixed stations covered a smaller section of the salinity range in this system (0 to ~20). The NeuseRE becomes strongly influenced by other watersheds (i.e., Tar-Pamlico) beyond the downstream extent of the lowest estuarine segment (Figure 1).

2.3. CO\(_2\) Flux Determinations

Both estuaries were divided into three morphologically distinct sections along their respective longitudinal axes (Figure 1), such that each estuary’s mouth is the point at which other watersheds become influential. These divisions are consistent with previous studies in the NeuseRE (Crosswell et al., 2012, 2014, 2017; Frankignoulle & Borges, 2002; Santos, Maher, & Eyre, 2012; Wang & Cai, 2004; Zhai et al., 2005). Water was continuously pumped from a depth of approximately 0.5 m (variable with boat speed) into a showerhead equilibrator, and air was circulated between this equilibrator and the infrared analyzer. Water was also sent through a flow-through cell (Dataflow) for measurements of chlorophyll a fluorescence (chl \(a\)), dissolved oxygen (DO), pH, salinity, temperature, and turbidity (YSI 6600 multi-parameter sonde, Yellow Springs Inc, Yellow Springs, OH). Measurements were recorded at 0.5 Hz, corresponding to a spatial resolution of ~6 m at a boat speed of ~40 km h\(^{-1}\). The raw CO\(_2\) mixing ratio in the equilibrator (xCO\(_2\)) was calibrated against two to three standards, ranging from 100 to 5,000 ppm (certified to ±2%), before and after each cruise, when measurements of atmospheric pCO\(_2\) (pCO\(_2\)(air)) were also made. This calibration curve was extrapolated linearly for xCO\(_2\) beyond 5,000 μatm. pCO\(_2\)(water) was calculated from calibrated xCO\(_2\) in the equilibrator according to equation (1), where \(T_w\) and \(T_{SHE}\) are measured temperatures in the water and equilibrator, respectively.

\[
pCO_2_{(water)} = xCO_2 \times e^{0.0423 \times (T_w - T_{SHE})}
\]

Average pCO\(_2\) was calculated for each segment, weighting each measurement by the distance between sampling points (shipboard GPS) and the surface area of each segment. Daily average pCO\(_2\) was then estimated by applying a linear interpolation to segment-average pCO\(_2\) from individual cruise dates. These interpolated
segment-average pCO_2 estimates were then used to calculate CO_2 flux (mmol C cm$^{-2}$ h$^{-1}$) using the stagnant-layer model (Smethie et al., 1985) according to equation (2):

$$\text{flux} = k \times K_0 \times \Delta pCO_2$$

(2)

where ΔpCO_2 is the air-water pCO_2 gradient. By convention, a positive ΔpCO_2 indicates $pCO_2($water$)$ greater than $pCO_2($air$)$. K_0 is the CO_2 solubility coefficient (Weiss, 1974). The gas transfer velocity, k (cm h$^{-1}$) was calculated using the following equation from Jiang et al. (2008):

$$k = \left[\frac{0.314 \times U_{10}^2 - 0.436 \times U_{10} + 3.99}{(S_{\text{SST}}/600)} \right]^{-0.5}$$

(3)

where U_{10} (m s$^{-1}$) is the daily averaged wind speed normalized to a height of 10 m. A brief discussion of the limitations of this method, including a sensitivity analysis of CO_2 flux using different k parameterizations, is included in the supporting information (Figure S2). Briefly, the use of different k parameterizations may overestimate or underestimate CO_2 flux by a factor of ~1.6–2 (Table S1). However, we chose the parameterization of Jiang et al. (2008) because it constitutes an intermediate estimate of k, considers both marine- and river-dominated estuaries, and is consistent with previous studies in both the NeuseRE (Crosswell et al., 2012) and NewRE (Crosswell et al., 2017). Hourly average wind speed was obtained from two autonomous vertical profilers deployed in the NewRE (Reynolds-Fleming et al., 2002), and from two meteorological stations (KEWN and KNKT) near the NeuseRE (Figure 1). S_{SST} is the Schmidt number for CO_2 at ambient sea surface temperature (SST) and sea-surface salinity (SSS). Because sampling began near the middle of 2014, study years rather than calendar years were used to calculate annual fluxes (Year 1: 27 October 2014 to 26 October 2015; Year 2: 27 October 2015 to 16 October 2016).

Discrete samples for dissolved inorganic carbon (DIC) measurements were collected by a diaphragm pump at the surface and ~0.5 m from the bottom, stored in a refrigerator unpreserved with no headspace in 20 mL scintillation vials, and analyzed on a Shimadzu TOC-5000A within 24 h. Previous studies have shown a difference between DIC in preserved and unpreserved samples (Crosswell et al., 2012); however, this difference is small relative to observed spatial and temporal variability in DIC. Hence, no correction was applied to DIC values here. CO2sys (Lewis & Wallace, 1998) was used to calculate all additional carbonate system parameters, including total alkalinity (TA) and Revelle factor (R). Carbonic acid dissociation constants (K_1 and K_2) of Dickson and Millero (1987) were assumed, and the National Bureau of Standards scale was used for pH. Measured pCO_2, DIC, SST, and SSS were used as CO2sys inputs. DIC measurements were only used when the boat was stationary for a sufficient time (at least 10 min) to ensure system equilibration with the parcel of water being sampled for DIC, temperature, and salinity.

Nonlinear changes in pCO_2 occur when mixing or net biological processes alter the concentration of DIC, and these changes are buffered to an extent that is determined by the relative concentrations of TA and DIC. Because both TA and DIC vary across the estuary, this carbonate buffering also exhibits spatial and temporal variability. Previous studies have shown the presence of a minimum buffering zone (MBZ) in mesohaline portions of some tropical and subtropical estuaries (Hu & Cai, 2013; Jeffrey et al., 2016; Ruiz-Halpern et al., 2015). At this MBZ, when temperature and salinity are held constant, pCO_2 is most sensitive to additional inputs of DIC. Here pH is approximately halfway between the pK_1 and pK_2 of H_2CO_3 (Cai et al., 2011), the ratio of DIC:TA included in the supporting information (Figure S2). Briefly, the use of different k parameterizations may overestimate or underestimate CO_2 flux by a factor of ~1.6–2 (Table S1). However, we chose the parameterization of Jiang et al. (2008) because it constitutes an intermediate estimate of k, considers both marine- and river-dominated estuaries, and is consistent with previous studies in both the NeuseRE (Crosswell et al., 2012) and NewRE (Crosswell et al., 2017). Hourly average wind speed was obtained from two autonomous vertical profilers deployed in the NewRE (Reynolds-Fleming et al., 2002), and from two meteorological stations (KEWN and KNKT) near the NeuseRE (Figure 1). S_{SST} is the Schmidt number for CO_2 at ambient sea surface temperature (SST) and sea-surface salinity (SSS). Because sampling began near the middle of 2014, study years rather than calendar years were used to calculate annual fluxes (Year 1: 27 October 2014 to 26 October 2015; Year 2: 27 October 2015 to 16 October 2016).

Discrete samples for dissolved inorganic carbon (DIC) measurements were collected by a diaphragm pump at the surface and ~0.5 m from the bottom, stored in a refrigerator unpreserved with no headspace in 20 mL scintillation vials, and analyzed on a Shimadzu TOC-5000A within 24 h. Previous studies have shown a difference between DIC in preserved and unpreserved samples (Crosswell et al., 2012); however, this difference is small relative to observed spatial and temporal variability in DIC. Hence, no correction was applied to DIC values here. CO2sys (Lewis & Wallace, 1998) was used to calculate all additional carbonate system parameters, including total alkalinity (TA) and Revelle factor (R). Carbonic acid dissociation constants (K_1 and K_2) of Dickson and Millero (1987) were assumed, and the National Bureau of Standards scale was used for pH. Measured pCO_2, DIC, SST, and SSS were used as CO2sys inputs. DIC measurements were only used when the boat was stationary for a sufficient time (at least 10 min) to ensure system equilibration with the parcel of water being sampled for DIC, temperature, and salinity.

Nonlinear changes in pCO_2 occur when mixing or net biological processes alter the concentration of DIC, and these changes are buffered to an extent that is determined by the relative concentrations of TA and DIC. Because both TA and DIC vary across the estuary, this carbonate buffering also exhibits spatial and temporal variability. Previous studies have shown the presence of a minimum buffering zone (MBZ) in mesohaline portions of some tropical and subtropical estuaries (Hu & Cai, 2013; Jeffrey et al., 2016; Ruiz-Halpern et al., 2015). At this MBZ, when temperature and salinity are held constant, pCO_2 is most sensitive to additional inputs of DIC. Here pH is approximately halfway between the pK_1 and pK_2 of H_2CO_3 (Cai et al., 2011), the ratio of DIC:TA approaches unity, and the Revelle factor is maximized. The Revelle factor (R) is a commonly used buffer factor of the carbonate system, defined as $\frac{\partial \ln(pCO_2)}{\partial \ln(DIC)}$, and is implicitly related to the ratio of DIC:TA (Egleston et al., 2010). In this study, we calculate R in CO2sys (Lewis & Wallace, 1998) using paired measurements of DIC, pCO_2, TA, and S. While the carbonate system can be quantitatively assessed using other sets of paired observations (DIC and TA, pCO_2 and pH, etc.), the combination of DIC and pCO_2 is preferred, given the current uncertainty in carbonate system measurements (Millero, 2013). We assess spatial and temporal variations in R and discuss them in the context of riverine TA and DIC inputs and ocean acidification.

2.4. Freshwater Age

A variety of metrics are used to assess the flow of C (and other properties) through ecological systems and the time scales involved, known as “system diagnostic times” (Sierra et al., 2017). In estuaries, terms like residence time, transit time, and age are often used, but their calculation often requires assumptions of steady state or homogeneous mixing, which are often not met (Alber & Sheldon, 1999). A lag time exists for water flowing between the head and mouth of all estuaries, meaning that the time for a given particle to exit the system...
varies along its length. Additionally, river flow can change rapidly, and if water residence time is to be calculated as the ratio of estuarine volume to river discharge, then the averaging time interval for discharge must be appropriate.

In this study, freshwater age (FW age) was calculated for each sampling date and for each segment using calculated freshwater volume and river discharge, obtained for the New River near Gum Branch (USGS gage #02093000), and for the Neuse River near Ft Barnwell (USGS #02091814). Given the location of these gauges far upstream of the estuary, and the presence of tributaries between the gauge and the estuary, it was necessary to scale discharge by dividing it by the ratio of total to gauged watershed (0.22 and 0.69 for the NewRE and NeuseRE, respectively) (Ensign, Halls, & Mallin, 2004; Peierls et al., 2012). The time period over which river discharge was averaged was then calculated using the “date-specific” method of Alber and Sheldon (1999) (Peierls et al., 2012). This method provides a robust estimate of the amount of time needed for river discharge to replace the volume of freshwater in the estuary. FW age for each estuarine segment was calculated as a cumulative sum, including all upstream segments.

2.5. Estuarine Versus Riverine Contributions to CO2

Allochthonous, river-borne CO2 is released to the atmosphere in estuaries, but it is also replenished when riverine organic carbon (OC) is respired to CO2 in estuaries. The balance between these autochthonous and allochthonous contributions to CO2 degassing is difficult to discern and likely varies in estuaries ranging from river-dominated, like the NeuseRE, to marine-dominated systems like the NewRE. We estimated the relative contributions of river-borne and estuarine CO2 sources ([CO2]river and [CO2]estuary) for both the river-dominated NeuseRE and the marine-dominated NewRE using methods adapted from Jiang et al. (2008) and Joesoef et al. (2015). In essence, CO2 delivered by the river was balanced against losses due to air-water exchange (integrated over the cumulative FW age), with the remainder attributed to net estuarine production.

First, for each segment and sampling date, the contribution of DIC due to mixing with ocean water (DIC_{mixing \ w/O}) was calculated using equation (4):

\[
\text{DIC}_{\text{mixing w/O}} = \text{DIC}_{\text{ocean}} \times S_i / S_{\text{ocean}},
\]

where \(S_i\) and \(S_{\text{ocean}}\) are the average salinities for each estuarine segment and the ocean (35), respectively, while \(\text{DIC}_{\text{ocean}}\) is the DIC concentration of the oceanic end-member (2,000 \(\mu\text{mol kg}^{-1}\)). The remaining DIC was attributed to mixing with river water (DIC_{mixing \ w/R}):

\[
\text{DIC}_{\text{mixing w/R}} = \text{DIC}_{\text{mixing w/O}} + \text{DIC}_{\text{river}} \times (1 - S_i / S_{\text{ocean}}),
\]

where \(\text{DIC}_{\text{river}}\) is the measured or modeled DIC concentration of river water for that date. \(\text{DIC}_{\text{river}}\) in the NewRE was estimated as the 0 salinity end-member for each date using a linear regression of measured estuarine DIC and salinity. An implied assumption of linear mixing may add a small uncertainty to subsequent calculations. \(\text{DIC}_{\text{river}}\) in the Neuse was measured, so it was not necessary to model this value. Both of these calculations were repeated for TA (oceanic end-member was assumed to be 2,200 \(\mu\text{mol kg}^{-1}\)), allowing CO2 contributions from mixing with both river water and the ocean ([CO2]_{mixing \ w/R} and [CO2]_{mixing \ w/O}, respectively) to be calculated with DIC, TA, and a \(T\) - and \(S\)-dependent equation of solubility (Weiss, 1974).

The direct CO2 contribution from riverine DIC and TA loading ([CO2]_{river}) was then calculated as

\[
[\text{CO2}]_{\text{river}} = [\text{CO2}]_{\text{mixing w/R}} - [\text{CO2}]_{\text{mixing w/O}}.
\]

The concentration of CO2 produced within the estuary ([CO2]_{estuary}) was then assumed to be equivalent to the difference between the measured [CO2] and [CO2]_{mixing w/R} accounting for losses due to air-water CO2 exchange, according to equation (7):

\[
[\text{CO2}]_{\text{estuary}} = [\text{CO2}]_i - [\text{CO2}]_{\text{mixing w/R}} + (\tau_i \times F_i).
\]

Here \((\tau_i \times F_i)\) is the temporally integrated CO2 flux for each segment, where \(\tau_i\) is the freshwater age, as calculated using the methods presented in Alber and Sheldon (1999), and \(F_i\) is the segment-average CO2 flux. \([\text{CO2}]_i\) is the segment-wide average of measured CO2 concentration, adjusted for solubility at measured temperature and salinity (Weiss, 1974).
Figure 2. Contour plots showing longitudinal transects (vertical axis) through time (horizontal axis) for both the (a) NeuseRE and (b) NewRE constructed using a linear interpolation method. The approximate timing of pCO2 surveys are indicated as the black triangles along the horizontal axis. Because the longitudinal axis of the NewRE is oriented in the north-south direction, latitude (decimal degrees) is used to represent distance down this estuary. Distance along the east-west oriented NeuseRE is represented with longitude (decimal degrees). Temperature (°C), salinity, pH, chlorophyll a (μg L⁻¹), dissolved oxygen (mg L⁻¹), and ΔpCO2 (μatm) are shown as the respective color axes.
3. Results

3.1. Physicochemical and Biological Setting

Segment-average salinity ranged from <5 to 34 in the NewRE but never exceeded 17 in the NeuseRE (Figures 2a and 2b). Seasonal trends, however, were very similar. High salinity in summer gave way to fresher conditions during the winter and spring, when precipitation in the watershed exceeded evapotranspiration (Litaker et al., 2002; Paerl et al., 2014). In the winter of 2015, maximum salinity in the NeuseRE was below the minimum salinity in the NewRE. Chlorophyll a (in situ fluorescence) was generally low (<10 μg L⁻¹), but episodic phytoplankton blooms were associated with elevated chlorophyll a (up to 150 μg L⁻¹) in the late fall/early winter of both 2014 and 2015. Blooms were often restricted to the upper or middle region of the estuary where they contributed to elevated DO and pH as high as 9.4 and 10.7 (midday sampling) in the NewRE and NeuseRE, respectively.

3.2. Spatial pCO₂ Trends

In general, pCO₂ decreased from the river toward the ocean, a trend that was most pronounced in the NeuseRE, where air water pCO₂ gradients (ΔpCO₂) often transitioned from positive to negative along the estuarine salinity gradient (Figure 2). Rapid increases in ΔpCO₂ below a salinity of 5 occurred irrespective of season or discharge condition in the NeuseRE (Figure 3). This trend is less evident in the NewRE, occurring nearly exclusively in the fall during high discharge conditions. The highest measured ΔpCO₂ values occurred in the upper estuary, with segment-average ΔpCO₂ reaching 4,654 (range = 3,310–5,806 μatm) and 3,480 μatm (range = 3,303–5,112 μatm) in the upper NeuseRE (September 2016) and NewRE (October 2015), respectively. These large pCO₂ supersaturation events corresponded with the lowest segment-average DO in both the NewRE (5.56 mg L⁻¹) and the NeuseRE (5.56 mg L⁻¹). Extremes CO₂ undersaturation was observed during the phytoplankton bloom in the winter/spring of 2015, with lowest segment-average pCO₂ of 99 in the middle NewRE, corresponding with relatively high DO (10.63 mg L⁻¹). The lowest pCO₂ was in the spring of 2016, at 72 μatm in the middle NeuseRE, also corresponding with elevated DO (11.69 mg L⁻¹).

While Figure 3 shows that ΔpCO₂ and salinity were generally negatively related, there was a high degree of variability in the relationship. Instances of positive and negative ΔpCO₂ can be found during all seasons and all discharge regimes, across the estuarine salinity range. However, a general trend of high pCO₂ across the salinity gradient during the fall transitioning to low pCO₂ conditions during the winter and spring can be observed. The highly variable relationship between ΔpCO₂ and salinity (Figure 3), as well as the “patchy”
nature of pCO$_2$ distributions on any given date (Figure 2), suggests that biological production and consumption are important drivers of pCO$_2$ in these shallow estuaries. The observed covariation in CO$_2$ and DO, occurring across all estuarine segments (Figure 2), supports the idea that regional variations in biological activity (photosynthesis and respiration) drive CO$_2$ distributions, irrespective of location along the salinity gradient.

3.3. Air-Water CO$_2$ Flux

System averaged ΔpCO$_2$ in both the NewRE and NeuseRE was generally positive (Figure 2); thus, both estuaries were most often sources of CO$_2$ to the atmosphere. Two major degassing events were seen in the fall of 2015 and 2016, both associated with the impact of large tropical weather systems, Hurricanes Joaquin and Matthew, respectively. Despite most of the estuarine surface area being at or near saturation with respect to the atmosphere (Figure 2), high pCO$_2$ in the upper segments generally maintained a positive air-water CO$_2$ exchange, particularly when river discharge was high, during the fall months (Figures 3 and S4). Between years 1 and 2, annual average CO$_2$ flux increased from 15.7 to 16.9 mmol C m$^{-2}$ d$^{-1}$ in the NewRE (an 8% increase) and from 7.7 to 17.5 mmol C m$^{-2}$ d$^{-1}$ (127% increase) in the NeuseRE. These enhanced CO$_2$ fluxes coincided with 27 and 32% increases in river discharge from year 1 to year 2 for the Neuse and New Rivers, respectively (Table 2). Over the 2 year study period, discharge was 180% of the antecedent 10 year average for the NewRE, 153% for the NeuseRE.

3.4. Freshwater Age

During the 2 year study period, FW age ranged from 6.9 to 136 days in the NeuseRE ($\bar{x} = 58$), and from 9.1 to 91 days in the NewRE ($\bar{x} = 46$) (Figure S3). Generally, FW age was low in the winter ($\bar{x} = 29$ and 27 days in the NewRE and NeuseRE, respectively) and increased through the spring to a summer maximum of ~3 months ($\bar{x} = 71$ and 84 days in the NewRE and NeuseRE, respectively). Storm events in the middle to late fall resulted in the lowest calculated FW ages. Minimum FW ages were observed at the end of the study, when 15–46 cm of rain fell on eastern NC during Hurricane Matthew, causing FW age to drop as low as 7 to 9 days.

Table 1

<table>
<thead>
<tr>
<th>Estuary</th>
<th>Type</th>
<th>Surface area (km2)</th>
<th>Water depth (m)</th>
<th>Watershed area (km2)</th>
<th>FW age (days)</th>
<th>Total alkalinity (μmol kg$^{-1}$)</th>
<th>DIC (μmol kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Marine-dominated, lagoonal</td>
<td>78.7</td>
<td>1.8</td>
<td>1,024</td>
<td>46 (±26.9)</td>
<td>River: 945 (±275)</td>
<td>River: 1,034 (±237)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estuary: 1,302 (±444)</td>
<td>Estuary: 1,298 (±366)</td>
</tr>
<tr>
<td>Neuse</td>
<td>River-dominated, lagoonal</td>
<td>352.1</td>
<td>2.7</td>
<td>15,700</td>
<td>58 (±33.6)</td>
<td>River: 349 (±172)</td>
<td>River: 456 (±177)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Estuary: 860 (±442)</td>
<td>Estuary: 817 (±371)</td>
</tr>
</tbody>
</table>

Note. Standard deviations are shown in parentheses.
years 1 and 2, annual average FW age decreased from 66 to 54 days in the NeuseRE and from 47 to 45 days in the NewRE, consistent with increases in freshwater discharge.

3.5. Riverine Versus Autochthonous CO2

Riverine CO2 inputs ([CO2]river) were greater in the river-dominated NeuseRE than in the marine-dominated NewRE, by a factor of 2.6, 3.4, and 5.2 for the upper, middle, and lower segments, respectively (Figure 4). Seasonally, [CO2]river was low in the summer and greatest during the spring and fall, when river discharge and ΔpCO2 were high (Figure 3). For systems with similar watershed characteristics and climatology, [CO2]river should scale with the ratio of watershed: estuary surface area. This ratio is 4 times greater for the NeuseRE than for the NewRE (Table 1), offering a partial explanation for the consistently larger [CO2]river in the NeuseRE. [CO2]river was above 0 along the length of both estuaries and decreased toward the ocean. As with [CO2]river, [CO2]estuary was greatest in the upper segments and quickly decreased toward the ocean, analogous to the negative relationship between pHCO2 and FW age (Figure 7). [CO2]estuary was larger in the NewRE than in the NeuseRE by a factor of 3, 18, and 7 for the upper, middle, and lower segments, respectively (Figure 4). This suggests that internal sources of CO2 (i.e., respiration) to surface waters were more important in the NewRE, despite both estuaries releasing a similar amount of CO2 to the atmosphere (Table 2). That pHCO2 appears to increase more at lower salinity in the NeuseRE (Figure 3) supports the notion that riverine sources of CO2 play a larger role in the river-dominated NeuseRE than in the marine-dominated NewRE. Seasonally, [CO2]estuary was greatest in the fall, most notably in the upper regions of both estuaries, and was lowest during the winter and spring, coinciding with elevated chl a and DO, and relatively low temperature (Figure 2). To further investigate the relative importance of riverine and estuarine processes on CO2 dynamics in these systems, segment-average CO2 flux was regressed on both [CO2]river and [CO2]estuary (Figure 6).

3.6. Buffering Effects

As in previous studies (Hu & Cai, 2013; Ruiz-Halpern et al., 2015), R was very low in the oligohaline portion of the NewRE and NeuseRE, and increased rapidly with salinity to a midestuary maximum (Figure 5). At this point, R decreased as low alkalinity river water mixed with seawater with a DIC:TA ratio less than 1. The MBZ, where R is maximized and water is poorly buffered, occurred at a lower salinity in NeuseRE (2–5) than in NewRE (5–10), coinciding with the upper NewRE and upper/middle segments of the NeuseRE, both of which constitute ~35% of the surface area of each estuary (Table 2).
4. Discussion

4.1. Air-Water CO₂ Flux

Globally, estuaries release approximately 20–40 mmol C m⁻² d⁻¹ to the atmosphere (Laruelle et al., 2013; Maher & Eyre, 2012; Regnier et al., 2013). We estimate CO₂ effluxes in the NewRE and NeuseRE to be well below this average, between 15.7 and 16.9 mmol C m⁻² d⁻¹ and between 7.7 and 17.5 mmol C m⁻² d⁻¹, respectively. Despite differences in morphology and surrounding land use between these estuaries (Table 1), annual CO₂ fluxes were quite similar (Table 2). However, CO₂ fluxes in the NeuseRE were ~30% greater than previously reported, demonstrating the effect of interannual-scale hydrologic variability on pCO₂ and associated fluxes. This large interannual variability in CO₂ flux, relative to between-estuary variability, indicates that data collected over a single year may not represent the long-term average. Hence, the nature of this hydrologic forcing must be better understood before CO₂ fluxes from these microtidal, lagoonal estuaries can be scaled globally and over longer time periods.

To further investigate the relative importance of riverine and estuarine processes on CO₂ dynamics in these systems, segment-average CO₂ flux was regressed on both [CO₂]river and [CO₂]estuary (Figure 6). In all cases, the correlation coefficient (R²) between [CO₂]river and CO₂ flux decreases from the upper to lower segments, highlighting the importance of river-borne CO₂ on outgassing in the upper segments of both estuaries. [CO₂] estuary was also correlated with CO₂ flux, with highest R² values in the middle and lower segments. Taken together, these results suggest that in river-dominated microtidal estuaries like the NeuseRE, biological processing drives the trend of decreasing pCO₂ from the head of the estuary to the mouth, while riverine CO₂ inputs have a larger impact on the magnitude of total estuarine CO₂ flux. In marine-dominated estuaries like the NewRE, however, internal production of CO₂, rather than riverine inputs appear to drive CO₂ oversaturation. While submarine groundwater discharge may be a significant DIC source in some estuaries (Call et al., 2015; Macklin et al., 2014; Santos et al., 2010), this source has been determined to be small in both the NeuseRE (Fear et al., 2007; Null et al., 2011) and NewRE (Crosswell et al., 2017). Previous studies have identified river-dominated estuaries as large CO₂ sources, relative to marine-dominated ones (Akhand et al., 2016; Jiang

Figure 6. Linear regressions between river-borne ([CO₂]river), estuarine CO₂ ([CO₂]estuary), and air-water CO₂ flux (mmol C m⁻² d⁻¹). CO₂ flux was most strongly correlated with [CO₂]river in upper estuarine segments (R² = 0.58 to 0.79) but with [CO₂]estuary in middle and lower segments (R² = 0.21 to 0.52).
et al., 2008). Our findings support this understanding; we show that river-borne CO₂ ([CO₂]river) was indeed larger in the river-dominated NeuseRE than in the marine-dominated NewRE, by a factor of 2.6–5.2. However, CO₂ generated within the estuary ([CO₂]estuary) was greater in the NewRE by a factor of 3–18, causing annual CO₂ fluxes to be similar between estuaries.

4.2. Freshwater Age

As shown in Figure 7, pCO₂ is maximized when FW age is short, consistent with trends observed for small lakes (Vachon & del Giorgio, 2014), global inland waters (Catalán et al., 2016; Hotchkiss et al., 2015), and modeled estuaries along the U.S. East Coast (Laruelle et al., 2017). Coincidentally, highest CO₂ fluxes were observed in response to Hurricanes Joaquin (late September 2015) and Matthew (early October 2016), when both estuaries were rapidly flushed. That [CO₂]estuary was greatest during the fall in both estuaries (Figure 4) indicates that net ecosystem respiration of riverine organic matter (OM), rather than riverine CO₂ inputs, is responsible for much of the CO₂ released during this period. While bioassays in the NewRE indicate that only ~20% of riverine DOC is labile (I. Anderson, personal communication, 2016), the respiration of this DOC alone is sufficient to sustain the increased pCO₂ we observe (Figure 3). For example, respiration of 20% of the average riverine DOC (600 μM) would generate 120 μM DIC, causing pCO₂ to increase by nearly 80%, from 4,437 μatm to 7,961 μatm (depending on TA). CO₂ inputs of this magnitude are sufficient to account for the large and nonlinear increases in pCO₂ observed at low salinity (Figure 3). Additionally, the respiratory DIC inputs assumed here (120 μM) are of similar order to [CO₂]estuary in the upper regions of both estuaries (Figure 4), further supporting the autochthonous nature of this CO₂ source.

As FW age increases, reductions in [CO₂]estuary cause pCO₂ to approach equilibrium with the atmosphere, reaching a minimum at around 14–30 days (Figure 7). Here the supply of nutrients is likely sufficient to support elevated primary productivity while minimizing the loss of phytoplankton to the ocean. Net CO₂ uptake is most often observed at these moderate FW ages during the spring and summer, as are elevated DO concentrations (Figure 2). Furthermore, despite relatively high CO₂ inputs from the estuary ([CO₂]estuary), riverine CO₂ inputs ([CO₂]river) were lowest during the summer (Figure 4), resulting in the moderate observed CO₂ fluxes (Table 2). Previous studies have demonstrated this effect in the NewRE and NeuseRE, where phytoplankton biomass was low at short FW age, increasing to a maximum at a FW age of ~10 days (Hall et al., 2013; Peierls et al., 2012). At FW ages above ~10 days, biomass decreased and became dominated by picoplanktonic cyanobacteria. Freshwater discharge and tidal exchange act together to govern the balance between nutrient/OC delivery and the flushing of phytoplankton from the estuary. At a moderate FW age of 2–3 weeks, phytoplankton growth exceeds the rate at which cells are flushed from the estuary, causing a negative air-water CO₂ flux and possible net ecosystem autotrophy. To our knowledge, this is the first study to quantitatively link flushing time with estuarine pCO₂ dynamics, a relationship that demonstrates the strong connection between hydrologic forcing and estuarine biogeochemistry, and supports the modeling results of Laruelle et al. (2017) as well as Maher and Eyre (2012).

While [CO₂]river drives air-water CO₂ exchange in the upper regions of both estuaries, it becomes less significant than [CO₂]estuary further downstream (Figure 6). However, [CO₂]river is only slightly attenuated downstream (Figure 4), likely due to the large amount of time needed for gas exchange to bring a given parcel of water to equilibrium with atmospheric CO₂. When the following average conditions are assumed (typical for the NeuseRE): water depth (H) = 500 cm, k = 8 cm h⁻¹, Revelle factor (R) = 5, [DIC] = 1.2 mM, and [CO₂]aq = 0.02 mM, the time scale for CO₂ exchange (τ_CO₂) can be estimated by the following equation (Ito et al., 2004; Jones et al., 2014):

\[
τ_{CO₂} = \frac{(H/k) \times (1/R) \times ([DIC][CO₂]_{aq})}{1000}.
\]

(8)

Using the values listed previously, equation (8) yields an exchange time of 31 days, which is of similar order as average FW age in the NeuseRE (58 days). If τ_CO₂ were much less than the average FW age, more rapid

Figure 7: FW age (days) versus pCO₂ (μatm), with exponential fits of the form: \(f(x) = \alpha e^{(b \times x)} + c \times e^{(d \times x)} \). R² = 0.857 for the NeuseRE and R² = 0.861 for the NewRE. The horizontal line represents pCO₂ equilibrium with the atmosphere (~400 μatm).
decreasing the buffering capacity and increasing high-salinity MBZ, provided that the DIC of incoming river water is sufficiently high. This appears to be the case in the NewRE, where TA is elevated in the river (Table 1) but high respiration drives DIC:TA toward unity, decreasing the buffering capacity and increasing R. This MBZ is accompanied by a region of relatively high pCO2 in both estuaries but occurs at a higher salinity in the NewRE (Figure 5 inset). That this region of elevated pCO2 is colocated with the MBZ in both estuaries is consistent with the concept of buffering; here respiratory inputs of CO2 drive acidification that cannot be buffered by noncarbonate alkalinity. Despite significant differences in watershed characteristics, poorly buffered MBZs in the upper NewRE and NeuseRE account for a large fraction (~35%) of the surface area of each estuary. These MBZs may influence the fate of DIC in both estuaries, increasing the fraction of DIC that can be exchanged with the atmosphere or assimilated by photoautotrophs in the upper region, before it can be transported downstream as HCO3− or CO32−. In support of this concept, a recent C budget compiled for the NewRE found that for the time period between July 2014 and July 2015, approximately 24% of the total DIC inputs to the upper estuary were lost to the atmosphere as CO2 (Crosswell et al., 2017). A similar C budget has not been constructed for the NeuseRE, but we expect that the inorganic C system of this estuary would be similarly sensitive to inputs of DIC.

The variation in location of the MBZ between the NewRE and NeuseRE can be attributed to differences in TA loads between the two rivers (Table 1), which are low in the Neuse River (TA = 349 µmol kg−1) relative to the New River (945 µmol kg−1). This difference may stem from the fact that the geology of the Neuse River watershed is dominated by floodplain alluvium, while that of the New River contains large carbonate mineral deposits (USGS 1993). The dissolution of these carbonate minerals by groundwater contributes to the relatively high DIC in the New River. Additionally, expansive riparian wetlands exist along the tidal freshwater reach immediately upstream of the NewRE but are less common along this portion of the Neuse River (wetlands are sparse along the main body of both estuaries). In effect, respiration of terrestrial OM within the watershed acts in concert with carbonate mineral dissolution to increase DIC:TA in the New River relative to the Neuse River, which in turn causes the MBZ in the NewRE to occur at a higher salinity than in the NeuseRE.

The existence of MBZs in both estuaries suggests that these systems may be sensitive to future acidification stress due to increased atmospheric CO2 or internal, eutrophication-driven CO2 inputs, as has been found for other North American estuaries (Cai et al., 2017; Feely et al., 2010; Hu et al., 2015; Wallace et al., 2014). In the U.S. Pacific Northwest estuary, Puget Sound, respiratory CO2 inputs acted in concert with relatively acidic upwelled ocean water to decrease estuarine pH by ~0.1 units below estimated preindustrial levels (Feely et al., 2010). Hydrogen sulfide oxidation, aerobic respiration, and the open-ocean acidification signal were recently shown to collectively induce significant acidification of the Chesapeake Bay (Cai et al., 2017). Elsewhere, declining alkalinity loads have driven long-term acidification in a set of Texas estuaries (Hu et al., 2015).

In the present study, the magnitude of anthropogenic CO2-induced acidification on the NewRE and NeuseRE may be estimated by adopting the calculations of Hu and Cai (2013). If we allow a current oceanic TA and DIC end-member to mix conservatively with freshwater (TA and DIC from Table 1), we can then calculate the change in estuarine pH resulting from anthropogenic CO2 additions to the ocean end-member alone. If atmospheric pCO2 increases to 800 µatm, a conservative estimate for the year 2100, pH will decrease by a maximum of 0.30 and 0.37 in the NewRE and NeuseRE, respectively (Figure S5). This acidification is
significant, even relative to typical spatial variations in pH on any given sampling date (Figure 2). Interestingly, we calculate that this maximum pH decrease will occur not at the current MBZs (salinity 2–10, Figure 5) but at a higher salinity of 14 and 18 in the NeuseRE and NewRE, respectively. This down-estuary shift in the MBZ with anthropogenic CO2 additions is already detailed in the literature (Hu & Cai, 2013) and will continue with further increases in atmospheric CO2. Similar pH decreases could be calculated from expected changes in aerobic (Hu & Cai, 2013; Sunda & Cai, 2012) or anaerobic (Cai et al., 2017) metabolism. Accordingly, factors like eutrophication, ocean acidification, and altered alkalinity loads will likely interact to drive unpredictable pH changes in both the NewRE and NeuseRE. Long-term trends in TA will be particularly important in determining the response of these estuaries to CO2-induced acidification, as has been demonstrated in the Baltic Sea (Müller et al., 2016). Because these higher-salinity regions of the NeuseRE and particularly NewRE are important for shellfish production, assessments of the vulnerability of these estuaries to future acidification are needed, given that local economies are among the 20% most socially vulnerable to further acidification (Ekstrom et al., 2015).

5. Conclusions

This study contributes to the current understanding that microtidal estuaries are small sources of CO2 to the atmosphere. We build on previous work by showing that on an annual scale, CO2 fluxes in the marine-dominated NewRE (15.7–16.9 mmol C m⁻² d⁻¹) are similar to those in the river-dominated NeuseRE (7.7–17.5 mmol C m⁻² d⁻¹), both of which are categorized as lagoonal and microtidal. However, these moderate CO2 fluxes observed in this study are greater than previously reported in the NeuseRE, due to relatively wet and stormy conditions during the study period. We identify a novel relationship between residence time and pCO2, where pCO2 is high at low FW age and decreases to a minimum at a FW age of between 2 and 3 weeks. Here nutrient delivery and phytoplankton flushing rates are presumably balanced, likely enhancing net ecosystem productivity. That this pCO2 minimum occurred at the same FW age in both estuaries indicates that biological drivers are comparable in these hydrodynamically distinct systems. Whether this relationship is universal to all estuaries, or is unique to the NewRE and NeuseRE, remains an open question. Modeling results suggest that riverine inputs of CO2 ([CO2]river) drove CO2 fluxes in the river-dominated NeuseRE, while estuarine-generated CO2 ([CO2]estuary) supported CO2 fluxes in the marine-dominated NewRE. Finally, a minimum buffering zone (MBZ) occurs in both estuaries, where pCO2 is particularly sensitive to additional inputs of DIC, and pH is expected to decrease by 0.3 and 0.37 units in the NewRE and NeuseRE, respectively by the year 2100. Differences in the geology and ecology of the respective catchments cause this MBZ to occur in slightly different portions of the NewRE than in the NeuseRE, but anticipated anthropogenic CO2 additions will cause this pH- and pCO2-sensitive region to move seaward in the coming decades.

Previous work has shown high spatial and temporal variability in air-water CO2 exchanges in estuaries. The findings presented in this study emphasize the role that watershed-scale hydrologic factors play in controlling this variability and, thus, the direction and magnitude of CO2 exchange in microtidal estuaries. Factors associated with a changing climate, like anthropogenic CO2 emissions, cultural eutrophication, and ocean acidification, which can act in concert with respiratory CO2 inputs to decrease estuarine pH, may have unpredictable effects on the observed relationships and should be the focus of future investigations.

Acknowledgments

We appreciate the assistance of J. Braddy, H. Walker, B. Abare, K. Rossignol, R. Sloup, and all individuals at VIMS and UNC-IMS who provided support in the field and lab. We thank the many collaborators and technical advisors within the Strategic Environmental Research and Development Program—Defense Coastal/Estuarine Research Program (SERDP-DCERP) who have provided insightful comments, data, and general guidance. We are also thankful to S. Cohen of NAVFAC and the Camp Lejeune Environmental Management Division staff. Raw data used in this study, along with most of the relevant calculations, are provided as a compressed file in the supporting information; more detailed inquiries may be directed toward the corresponding author. Data for the NewRE are available online at the following repository maintained by RTI International (https://dcerp.rti.org/login.aspx?ReturnUrl=%20MARDISHome.aspx). This research was funded by SERDP-DCERP project RC-2245, the North Carolina Department of Environmental Quality (ModMon Program), the Lower Neuse Basin Association, NC Sea Grant, and the UNC Water Resources Research Institute.

References

VAN DAM ET AL.