Why does N-limitation persist in the world's marine waters?

Hans W. Paerl

University of North Carolina at Chapel Hill, Institute of Marine Sciences, 3431 Arendell Street, Morehead City, NC 28557, USA

ARTICLE INFO

Keywords:
Nitrogen limitation
N₂ fixation
Denitrification
Eutrophication
Cyanobacteria
Climate change

ABSTRACT

Primary production of vast regions of the world's estuarine, coastal and pelagic ocean waters is limited by availability of fixed nitrogen; this despite the fact that a highly diverse suite of microorganisms potentially capable of fixing N₂ (eubacteria and cyanobacteria), inhabit these waters. Theoretically, diazotrophs should supply the N needed to balance the N required to support primary production, assuming other key limiting nutrients, phosphorus and iron, are available and energy requirements are met. In practice however, N₂ fixation frequently does not meet ecosystem-scale N demands, even when these nutrients are replete. The problem lies with the fact that optimal rates of N₂ fixation are often controlled by additional environmental factors, including light and organic matter availability, turbulence, and high levels of dissolved oxygen which can suppress this process in N-deplete surface waters. In addition, rates of N loss via denitrification and anammox can exceed N₂ fixation and external N inputs on annual scales in coastal and pelagic waters, including those experiencing eutrophication. This creates a situation where chronic N limitation persists, even in the presence of anthropogenic nitrogen enrichment. Many aquatic ecosystems exhibit a perpetual “hunger” for fixed N to support primary and higher levels of production and this is likely to continue over foreseeable biological and geologic timescales.

1. Introduction

A persistent biogeochemical feature of vast regions of the world's oceans is that primary production is nitrogen (N)-limited (Dugdale, 1967; Ryther and Dunstan, 1971; Capone et al., 2008); this despite the fact that microbially-mediated nitrogen (N₂) fixation may supply combined N as NH₃ that can relieve this limitation (Fogg, 1942; Capone and Carpenter, 1982; Voss et al., 2011; Gruber, 2016; Gardner et al., 2017). Stoichiometry suggests that N₂ fixation should supply cellular N needs as long as phosphorus (P) and micronutrient (especially iron (Fe)) supplies are readily available (Doremus, 1982; Smith, 1984; Tyrrell, 1999; Paerl, 1990). However, global patterns of N₂ fixation are complex and not completely understood and it has been noted that there is local and larger-scale spatial variability between where biologically-mediated N₂ fixation and N loss processes, including denitrification and anammox (Gruber and Sarmiento, 1997; Moore et al., 2013; Weber and Deutsch, 2014; Somes and Oschlies, 2015). Geochemical evidence suggests that N-limited conditions have prevailed in a bulk (~70%) of the world's ocean basins in recent geological time (Berman-Frank et al., 2008), and in numerous freshwater and brackish habitats, including lakes, estuaries and coastal seas (e.g., Baltic Sea) (Guildford et al., 2003; Elser et al., 2007; Paerl and Pfehler, 2008; Conley et al., 2009; Abell et al., 2010; Kolzau et al., 2014). Therefore, the question arises, why doesn't N₂ fixation compensate for N limitation when there is enough available P and Fe present to support this process?

The problem doesn't seem to be one of flawed stoichiometry, hidden or unrecognized sources of carbon and phosphorus that are left unexplained to balance the atomic “Redfield Ratio” of 106:16:1 (C:N:P) needed to achieve “optimal growth” of primary producers (Redfield, 1958), but rather an imbalance of supplies in these cellular constituents. There are highly diverse N₂ fixing Eubacterial, Archaeal, and Cyanobacterial communities present in marine and freshwater systems (Zehr et al., 2003; Zehr and Paerl, 2008). Here, I examine the array of environmental constraints and limitations that can help explain the apparent chronic discrepancy between N requirements and the ability of N₂ fixation to match them in aquatic ecosystems.

An assumption regarding environmental demands and controls of N₂ fixation is that N₂ fixation should supply the appropriate amount of nitrogen to support growth, if adequate amounts of biologically-available phosphorus are available (Doremus, 1982; Froelich, 1988; Tyrrell, 1999; Schindler et al., 2008). However, this balance is seldom achieved on either the organismal or the ecosystem level (Paerl, 1999; Scott and McCarthy, 2010; Lewis et al., 2011; Paerl et al., 2016). What is the reason for this shortfall?

The enzymatically-mediated (nitrogenase) process of N₂ fixation relies on adequate P, Fe and (in the case of micro-heterotrophs) organic C supplies. However, it also has a very high energy demand, requiring
activated irreversibly in the presence of molecular oxygen (O2) (Gallon, 1992). Light is the energy source in phototrophic diazotrophs, including photosynthetic bacteria and cyanobacteria. By contrast, organic carbon compounds and redox reactions supply the energy and reductant needed to drive this process in non-cyanobacterial heterotrophic prokaryotes. Therefore, adequate sunlight to support photosynthesis and availability of oxidizable organic matter to support heterotrophs are required for this process to operate at maximal rates. In addition, the enzyme complex mediating N2 fixation (dinitrogenase reductase) contains iron and molybdenum as cofactors, so adequate supplies of these metals in biologically-available forms is essential for the optimal function of this complex. Furthermore, energy transferring compounds, such as ferredoxin, NADH/NADPH require Fe and other metal cofactors (Co, others) to operate. Lastly, N2 fixation is an evolutionarily “ancient” anaerobic process, which most likely evolved during the anoxic pre-Cambrian period (Towe et al., 2002). It is inactivated irreversibly in the presence of molecular oxygen (O2) (Gallon, 1992), and experimental evidence indicates that the process is partially suppressed at pO2 levels ranging from subsaturated to supersaturated, among a wide range of cyanobacteria (Paerl and Kellar, 1978; Fay, 1992; Gallon, 1981, 1992; Paerl, 2017). Vast stretches of the oceans that are most N-deplete are also fully oxygenated and at times supersaturated, and may exhibit Fe limitation (or co-limitation). The above requirements and constraints interact with P availability to control when, where and how much N2 can be fixed in the global ocean as well as freshwater ecosystems (Fig. 1).

Diazotrophic microbes, especially cyanobacteria, the only oxygenic phototrophs capable of N2 fixation, have developed diverse strategies for addressing the “oxygen problem” (Fay, 1992; Gallon, 1992). These factors include; 1) forming colonies and aggregates, which spatially separate photosynthesis and N2 fixation (Paerl et al., 1988; Paerl and Bebout, 2018), 2) temporal separation of processes, with oxygenic photosynthesis supplying energy and carbon needs during daytime and conducting N2 fixation at night (Paerl, 1990; Zehr and Paerl, 2008), 3) confining N2 fixation to specialized, O2-free cells called heterocysts during daytime (Fay, 1992; Wolk, 1996), and 4) participating in symbiotic relationships, either as endosymbionts or epipsymbionts, with eukaryotic algae (e.g., the Rhizoselenia-Richelia symbiosis), higher plants and invertebrates (Postgate, 1988; Kneip et al., 2007; Fiore et al., 2010; Foster et al., 2011).

These cellular and organismal adaptations constitute ingenious strategies for fixing N2 in an “inhospitable” modern-day oxic biosphere (c.f., Postgate, 1988; Fay, 1992; Gallon, 1981, 1992; Kneip et al., 2007; Fiore et al., 2010). However, they are neither “perfect” nor 100% efficient in supplying the organismal needs for fixed N. In fact, even though the most highly evolved heterocystous cyanobacteria are sensitive to inward oxygen diffusion during active growth or “bloom” periods, when ambient O2 saturation readily exceeds 100% (pO2 ~ 0.2) (Stewart and Pearson, 1970; Fay, 1992; Gallon, 1981; Gallon, 1992; Wolk, 1996; Paerl, 1978; Paerl and Kellar, 1978; Paerl, 2017) (Fig. 2).

The capacity for N2 fixing microorganisms to supply fixed N must be addressed at the ecosystem scale, in the context of net N fluxes and budgets. The main biogeochemical N loss mechanisms on this scale are denitrification, i.e. the conversion of NO3− to N2 (Capone et al., 2008), volatilization of gaseous N forms, such as NH3, N2O, NO and NO2 (Devol et al., 2006; Ward, 2007), anammox ((the anaerobic oxidation of ammonium and nitrite to N2) (Dalsgaard et al., 2012), and burial (Gruber, 2008). Together, these processes represent significant within-system losses in freshwater, estuarine and coastal ecosystems. Denitrification is a major N loss pathway (Seitzinger, 1988; Seitzinger and Giblin, 1996; Joye et al., 1996; Codispoti et al., 2001; Grantz et al., 2014; Zhu et al., 2018), and where comparisons have been made more N appears to be leaving than entering when areal rates of N2 fixation are compared to denitrification on an annual basis (Codispoti et al.,

Fig. 1. The nitrogen fixing process, as mediated by cyanobacteria (utilizing oxygenic photosynthesis as an energy and C source), heterotrophic and chemolithotrophic microorganisms, in surface waters. Potential environmental controls, including phosphorus (P) and iron (Fe) availability, energy sources, and dissolved oxygen inhibition, are shown highlighted in yellow. Figure adapted from Paerl, 2017. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
and exclusive N limitation with increases in trophic state and P loading (Elser et al., 2007; Conley et al., 2009; Paerl and Scott, 2010; Grantz et al., 2014). This observation is attributed to denitrification rates increasing relative to \(\text{N}_2 \) fixation rates with organic matter enriched conditions as systems become more eutrophic (Paerl et al., 2016; Gardner et al., 2017).

Climatic changes may further exacerbate N-limited conditions in both freshwater and marine environments. Global warming enhances metabolic rates, including those mediating N transformations. This phenomena may affect denitrification more than \(\text{N}_2 \) fixation, because the former relies on temperature-sensitive organic matter oxidation/decomposition as a source of energy, while \(\text{N}_2 \) fixation in photosynthetic bacteria relies more heavily on radiant energy. Studies at high latitudes (tundra as well as aquatic habitats) indicate mineralization of organic matter and respiration are highly temperature-dependent, whereas \(\text{N}_2 \) fixation rates are less dependent on these reactions (Postgate, 1998). Note, the former processes, critical to denitrification potential, are stimulated significantly by warming (Veraart et al., 2011; Keil et al., 2015).

More extreme episodic rainfall events as well as a generally wetter climate appear symptomatic of climatic changes taking place in many regions in Earth. This leads to increased nutrient and organic matter runoff and inputs to estuarine, coastal and pelagic regions (Hilton et al., 2008; IPCC, 2014; Regnier et al., 2014; Tian et al., 2015; Raymond et al., 2016). These factors stimulate not only eutrophication, but also intensify salinity stratification in surface waters, which combined enhance the production and expansion of low oxygen “dead zone” bottom waters (Diaz and Rosenberg, 2008). This pattern will expand habitats ideal for denitrification far more than \(\text{N}_2 \) fixation (McCarthy et al., 2015), which can be suppressed by elevated concentrations of ammonium in such low oxygen habitats; further offsetting the balance between these processes in favor of denitrification. It is difficult to envision a scenario where the opposite effects can be expected, in part because the anticipated microbial habitat conditions favor denitrification and the increases in anthropogenic nitrate and other combined N loadings accompanying eutrophication will tend to suppress \(\text{N}_2 \) fixation rates (Postgate, 1998).

With increases in anthropogenic external nutrient, and specifically N, loadings to the biosphere (Galloway et al., 2002) and anticipated increases in episodic rainfall and runoff as well as groundwater discharge events accompanying climatic changes (Trenberth, 2011), why...
would N limitation not be relieved in receiving marine waters? Increased N (dominated by nitrate) loading will accelerate estuarine and coastal eutrophication, leading to an increase in autochthonous organic matter production (Paerl and Piehler, 2008; Jessen et al., 2015). Increased terrestrial (allochthonous) runoff will increase organic matter input from impacted watersheds, stimulating heterotrophic activity. Furthermore, increased freshwater discharge will enhance vertical density stratification in receiving estuarine and coastal waters. The combined effects of increased nitrate and organic matter enrichment and stronger stratification include promotion of bottom water hypoxia and denitrification, with less of a positive (if any) effect on N₂ fixation. Phosphorus enrichment also occurs in this scenario, but since there’s no gaseous form of P that can ‘escape’ the system, P exhibits high retention rates on the ecosystem scale (Vollenweider, 1975; Kennedy, 1999). Hence, P continues to accumulate and internally cycle, thereby minimizing P-limitation and further promoting denitrification. This scenario is depicted in the following figure (Fig. 3; adapted from Paerl et al., 2016). In effect, the somewhat counter-intuitive scenario that evolves is one of estuarine and coastal waters becoming chronically “nitrogen hungry” as they receive increasing doses of both anthropogenic nitrogen (a large fraction of it nitrate) and organic matter, both of which would stimulate denitrification and other N loss mechanisms (ammonox, volatilization of gaseous N forms) to a greater extent than N₂ fixation.

2. Concluding remarks

Given the evolutionary biogeochemical “bottleneck” created by a modern-day oxic biosphere, combined with increasing anthropogenic and climatic pressures tending to favor denitrification over N₂ fixation, it seems likely that the global oceans as well as most inland waters will continue to be characterized as being chronically N deficient or “limited”; this despite the fact that N emissions and discharge to these waters are likely to continue increasing with human population growth, expanding agricultural and industrial production and urbanization. This paradox will continue in the near future as a fixed nitrogen “glut” continues. Complicating this scenario is the increased generation of N-based greenhouse gases (e.g., N₂O, NOx) from human generation and discharge of fixed N compounds, which modulate our climate (Zaehle et al., 2011; Suddick et al., 2013). Ironically, this pattern seems to create a positive feedback loop. The more we create and disperse fixed N in the biosphere, the greater the denitrification potential, while N₂ fixation potentials are either unaffected or reduced. This would lead to an increased disparity between biologically-mediated inputs and outputs of fixed N and the maintenance of N limited conditions. There are exceptions to this in the case of very large anthropogenic N inputs, such as reported in freshwater and marine waters impacted by excessive anthropogenically-generated terrigenous and atmospheric N inputs (Elser et al., 2009; Yang and Gruber, 2016). A specific example includes Lake Tahoe, CA-NV, where sharp increases in atmospheric N loading from fossil fuel emissions in the Tahoe Basin has shifted the lake from exclusively N limited lake up to the 1970’s to one that is now N and P co-limited (Jassby et al., 1994). Another example is the effect of the spring, N-rich runoff period in the Mississippi plume region of the northern Gulf of Mexico, that has driven these waters into periodic P limitation (Sylvan et al., 2006). However, even in this extreme case, the system returns to N limited conditions during much of the rest of the year (Justić et al., 1995).

Acknowledgements

This work was supported by the National Science Foundation DEB (1240851), OCE (0825466, 0812913, 1705972), and CBET (0932632). I appreciate the helpful discussions with D. Capone, W. Gardner, M. McCarthy and J.T. Scott.

